Survey of thrips in Sri Lanka: A checklist of thrips species, their distribution and host plants

Kalpana Tillekaratne1,2, J.P. Edirisinghe3*, C.V.S. Gunatileke3 and W. A. I. P. Karunaratne1

1Department of Zoology, Faculty of Science, University of Peradeniya, Sri Lanka
2Postgraduate Institute of Science, University of Peradeniya, Sri Lanka
3Department of Botany, Faculty of Science, University of Peradeniya, Sri Lanka

Accepted 08 November 2011

ABSTRACT

Thrips of Sri Lanka have been poorly studied despite their significance to agriculture and horticulture of the country. A survey of thrips and their host plants was conducted in several parts of Sri Lanka during 2005-2008, with a view to record the species present, their distribution, host plant relationships and damage caused. Over 1,000 plant species comprising crops, ornamental plants, weeds, shrubs, and trees were examined for thrips in 22 study sites, representing a range of habitats in nine districts covering 12 agrochemical regions of the country. Damage in plants due to thrips infestations was documented. This paper presents a list of 72 thrips species in 45 genera recorded during the survey from 324 host plant species in 83 plant families. *Megalurothrips usitatus*, *Thrips palmi*, and *Haplothrips gowdeyi* were the most widely distributed species. The grass infesting *Haplothrips* spp., several species of *Thrips*, *Microcephalothrips abdominalis*, *M. usitatus* and *Scirtothrips dorsalis* are some of the species with a large number of host records. *Thrips simplex* in particular was confined to the Upcountry Wet zone, while *Thrips flavus* was most widespread in this region and was present on almost all the vegetation. The survey identified 24 species of thrips represented in 20 genera that were not recorded previously from Sri Lanka. Majority of the thrips recorded are pest species, cosmopolitan in distribution. The most common damage due to thrips infestations was discoloration, scarring and browning of leaves and flowers, most pronounced in cut flowers. The survey updates the information on the Thysanoptera of Sri Lanka and highlights their importance in agriculture and floriculture.

Key words: agriculture, floriculture, damage, pest species, new records

INTRODUCTION

Thrips (Order Thysanoptera) of the world comprise 5500 species in 750 genera (Moritz et al., 2004). They are more common in warmer tropical parts of the world than in the temperate regions. About 50% of them are fungal feeders, while 40% feed on living tissues of dicotyledonous plants and grasses and the balance exploit primitive plants or are predatory (Morse and Hoddle, 2006). Species infesting higher plants are found on leaves, shoots, flowers, flower buds, axillary buds, young fruits and cones of Conifers (Lewis, 1973). Others inhabit lichens, mosses, ferns, dead tree trunks and leaf litter (Mound, 2004). Those infesting living tissues of plants are sap feeders while flower dwelling species feed on pollen. A few predate on mites, scale insects and other thrips (Mound, 2004).

Thrips play destructive as well as beneficial roles in agriculture. They are plant pests (Lewis, 1973; Morse and Hoddle, 2006) causing scarring and silverying of leaves, petals and fruits, premature flower fall, pollen depletion, leaf shedding and also leaf deformity. They also form leaf galls (Lewis, 1973; Raman & Ananthakrishnan, 1984). Furthermore, thrips are important vectors of tospoviruses that cause serious crop losses around the world (Mound, 1996; Lewis, 1973). Predatory, species such as *Frankliniella orizabensis* have been used in the biological control of *Scirtothrips persea* (Hoddle et. al., 2004). Thrips are increasingly being recognized as plant pollinators (Mound, 2004) in plants as diverse as oil palm (Syed, 1979) and rainforest trees (Nyree et al., 2004).

The thrips of the Indian subcontinent have been extensively documented by Ananthakrishnan and Sen (1980) and Bhatti (2004a and b). Ananthakrishnan (1980) gives a key to all recorded Indian species of thrips and their host plants. Thrips of Sri Lanka have been poorly studied despite their significance to agriculture and horticulture of the country. The first extensive account of the Order

Corresponding author’s email: jpediri@pdn.ac.lk
Thysanoptera in Sri Lanka is by Schmutz (1913) where a total of 43 species are included. Thereafter, three *Haplothrips* species from Sri Lanka were recorded by Pitkin (1976) with their distribution and host plants. Many years later, some of the fungus feeding thrips of Sri Lanka was discussed in an account of nine genera of thrips from the Oriental region (Mound and Palmer, 1983). More recently, Oda *et al.* (1997) recorded thrips from ornamental plants in Sri Lanka. Wijerathna (1999) compiled a list of 18 species of thrips from 28 crop species, along with many other pests from a wide variety of crops, largely from unpublished records of the Department of Agriculture. The CABI/International crop protection compendium lists 16 species from Sri Lanka that are common pest thrips. A comprehensive list of Thysanoptera of Sri Lanka comprising 78 species in 46 genera was compiled from published literature and museum records, dating from 1913 up to the present survey by Tillekaratne *et al.* (2007).

Since the pioneering work of Schmutz in 1913 and later by a few others on selected economic crops, a recent field study has not been conducted on thrips and their host plants in Sri Lanka. As thrips have increasingly become pests of crops, it is important to document the current distribution and host range of thrips as well as the damage they inflict. Also, it is important to know the status of potential pest species since the early records. The present survey thus updates the information on the Thysanoptera of Sri Lanka and highlights their importance in agriculture and floriculture.

MATERIALS AND METHODS

Collection sites

Field collection of thrips was carried out in 22 sites located in nine administrative districts covering four climatic zones and 7 agroecological regions of the country. The selected sites are located at different elevations in the Dry, Wet, Intermediate and Montane Zones of the country. Selection of collection sites was based on accessibility, agroecological regions, proximity to Agricultural Research Stations, vegetation type and habitat type. Financial constrains for travel limited the number of visits to distant sites. The Northern and Eastern Provinces of the country were not included in the survey due to the civil unrest that prevailed in these areas during the study period. The locations of the 22 study sites in relation to the agro ecological regions of the country are shown in Fig. 1.
The 22 collecting sites represented the following habitat categories:

Agricultural fields (AF)
Agricultural Research Stations, farmer fields and crop nurseries in Gannoruwa, Maha-Illuppalama, Sita Eliya, Bandarawela, Makandura, Angunakolapalassa, Bathalagoda, Dambulla, Marassana and Naula.

Floricultural fields (FF)
Royal Botanical Gardens at Peradeniya, Hakgala Botanical Gardens, Peradeniya University Park and several cut flower farms in Nuwara Eliya and Bandarawela.

Natural Forests (NF)
Knuckles forest reserve, Sinharaja rain forest, Badalgamuwa forest reserve, Kanneliya forest reserve.

Disturbed Habitats (DH)
Road sides, foot paths, home gardens, fallow rice fields, weedy patches and grasslands in different collection sites.

Collection of Thrips
At each collection site, natural and cultivated vegetation (crops, ornamental plants, shrubs and trees) and weeds were checked for thrips. Different plant parts were closely examined for populations of thrips and individuals hand collected using a fine brush in to the collecting fluid, a mixture of alcohol, glycerol and acetic acid (AGA). Thrips on small branches were collected using a beating tray. At the time of collection, location of thrips on the plant and the type of damage observed due to thrips infestation were recorded. Felled tree trunks, freshly cut timber, logs and leaf litter were examined for fungus feeding thrips. Leaf litter samples collected (50 m²) were extracted in Berlese funnels.

Identification of thrips
Thrips were identified using taxonomic keys, digital images and descriptions of Moritz et al. (2001), Moritz et al. (2004), Ananthakrishnan & Sen (1980), Palmer (1980), Palmer and Mound (1978). In addition, keys of Wilson (1975) and Pitkin (1976) were used for specific subfamilies and genera. The identity of difficult species and those previously not recorded from Sri Lanka were confirmed by Dr. L.A. Mound, Honorary Research Fellow, CSIRO Entomology, Australia, and Prof. J. S. Bhatti, New Delhi, India.

Identification of host plants of thrips
Plants infested with thrips and harbouring a population were considered as host plants. Well known common cultivated plants and weeds were identified in the field itself and others through herbarium specimens identified with help from the Department of Botany, University of Peradeniya and the National Herbarium, Peradeniya.

Identification of thrips damage
In thrips infested plants, different plant parts such as leaves, flowers, flower buds and fruits were closely examined for thrips damage and checked for probable signs of viral infection such as curling, crumpling and leaf discolouration. Leaves of plants with morphologically distinct galls were collected and examined for thrips.

RESULTS
Thrips recorded during the survey are given in an annotated, systematic list (Appendix 1) arranged according to the classification of Mound and Kibby (1998). The distribution of each thrips species is stated in relation to the collection site/agroecological region/climatic zone. Host plants of each thrips species is arranged alphabetically according to genera and species (family). The type of damage in host plants due to thrips infestation is stated under each species. Pest thrips species and species previously not recorded from Sri Lanka are also indicated.

Thrips species recorded
A total of 72 species of thrips in 45 genera, belonging to 5 subfamilies were recorded during the survey. Of them, 57 were identified to species level, 9 to generic level and 6 to subfamily level. Subfamily Thripinae included the most number of species (34) and genera (18). Subfamily Phlaeothripinae was represented by 16 species in 11 genera making it the second largest subfamily of thrips, followed by subfamily Panchaethriphinae that included 12 species in 11 genera. Each of the remaining subfamilies; Dendrothripinae and Idolothripinae included only 2-4 species. Genus Thrips was the most speciose with 13 species, while each of the remaining genera was represented by 1-3 species only.

Among the thrips collected and identified during the survey are 18 genera and 25 species not previously recorded form Sri Lanka, according to the checklist of Tillekratne et al.,
Distribution of thrips

The 22 collection sites are distributed in the Dry (03 sites), Wet (11 sites), and Intermediate Zones (08 sites) of the country. Hence, the survey included more Wet zone collection sites that resulted in a higher number of thrips species (234 spp.) and thrips infested plant species (in 68 genera) being recorded from the Wet zone (Fig. 2). Although, there was a marked difference in the number of thrips infested plant species in the 3 climatic zones, the number of thrips species infesting these plants did not show a marked difference, but varied from 33 - 48 species in 18-23 genera.

The 22 collection sites came under 7 agroecological regions. Each of these 7 agroecological regions were represented by three or more collection locations except the Low Country Wet Zone (1 location) and Upcountry Intermediate Zone (2 locations). The number of thrips infested plant species and the number of thrips species recorded from each collection site and in each agro ecological region are given in Table 1. The largest number of thrips species (175 spp.) and thrips host species (43 spp.) were recorded from the Mid country Wet zone

In terms of individual collection sites, from Angunakolapellassa, located in the Low Country Dry zone, the largest number of thrips (25 species in 15 genera) and host plants (61 species in 26 genera) were recorded. Peradeniya University Park located in the Midcountry Wet zone had the second largest collection of thrips infested plant species and thrips species. Kahagolla in the Upcountry Intermediate zone had the third highest number of thrips infested plants and thrips species.

Thrips flavus in particular was abundant and widely distributed in the Upcountry Wet zone collection sites; Hakgala, Nuwara Eliya and, Sita Eliya (Fig.3). In this agroecological region almost all flowering plants were infested with this species. In collection sites of other agroecological regions this trend was not observed as shown in Fig.3. Furthermore, *Thrips simplex* in particular was recorded only from the Upcountry Wet zone. In the Dry zone, *Retithrips syriacus* was very common on mature leaves.

Many of the collection sites were agricultural habitats widely distributed in all the climatic zones, agroecological regions and at several elevations. The crops grown in these different agricultural habitats were largely vegetables, a few fruit crops and rice. These economic plant categories included the highest number of thrips infested plant hosts (156 plant species in 50 plant families). Forty five species of thrips in 28 genera infested the agricultural crop species. A similar number of thrips infested plant species (151 spp.) were recorded from disturbed habitats comprising fallow rice fields, home gardens, weedy patches/scrub and road sides; from where 37 thrips species were recorded. From floricultural sites, 26 thrips species were recorded from 75 species of flowers. The natural forest habitats supported the least number of thrips host plant species (51 spp.) that harboured only 26 thrips species.

Host plant relationships of thrips

Over 1000 plant species were examined for thrips during the study. Thrips were present on 347 plant species. Of them, established populations of thrips species were present only in 324 plant species in 83 families. The other 23 plant species harboured only a few individuals of one or more thrips species. A total of 69 species of thrips were recorded from 324 plant species in 83 plant families. Of the plant families, Poaceae, Asteraceae, Fabaceae, ranked first, second and third, respectively, harbouring the most number of thrips species and genera. Poaceae with 38 species of grasses and Cyperaceae with 5 species of sedges harboured 6 different thrips species. Asteraceae with 38 host plant species harboured 11 different thrips species and Fabaceae with 36 spp. of host plants recorded 16 species of thrips.
Figure 2. Distribution of thrips species and their host plant species in the major climatic zones of Sri Lanka. () No. of genera recorded

Table 1. Number of thrips species and their host plants in different collection sites, agroecological regions and habitats.

<table>
<thead>
<tr>
<th>Collection site & Agroecological region (Habitats)</th>
<th>No. of host species (Families)</th>
<th>No. of Thrips species (Genera)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Country Dry Zone</td>
<td>94 (34)</td>
<td>33 (19)</td>
</tr>
<tr>
<td>Angunakolapelassa (AF, DH)</td>
<td>61 (26)</td>
<td>26 (15)</td>
</tr>
<tr>
<td>Dambulla (AF, DH)</td>
<td>21 (11)</td>
<td>14 (10)</td>
</tr>
<tr>
<td>Maha Illuupallma (AF, DH)</td>
<td>38 (20)</td>
<td>23 (16)</td>
</tr>
<tr>
<td>Low Country Intermediate Zone</td>
<td>26 (14)</td>
<td>20 (12)</td>
</tr>
<tr>
<td>Badalgamuwa (NF)</td>
<td>01 (01)</td>
<td>01 (01)</td>
</tr>
<tr>
<td>Bathalagoda (DH)</td>
<td>13 (05)</td>
<td>10 (07)</td>
</tr>
<tr>
<td>Makandura (AF, DH)</td>
<td>12 (08)</td>
<td>11 (08)</td>
</tr>
<tr>
<td>Low Country Wet Zone</td>
<td>04 (02)</td>
<td>02 (02)</td>
</tr>
<tr>
<td>Kanneliya (NF)</td>
<td>04 (02)</td>
<td>02 (02)</td>
</tr>
<tr>
<td>Mid Country Intermediate Zone</td>
<td>48 (21)</td>
<td>22 (12)</td>
</tr>
<tr>
<td>Knuckles (NF, AF)</td>
<td>35 (19)</td>
<td>16 (09)</td>
</tr>
<tr>
<td>Matale (AF, DH)</td>
<td>11 (08)</td>
<td>12 (10)</td>
</tr>
<tr>
<td>Naula (AF, DH)</td>
<td>07 (03)</td>
<td>05 (05)</td>
</tr>
<tr>
<td>Mid Country Wet Zone</td>
<td>175 (51)</td>
<td>43 (21)</td>
</tr>
<tr>
<td>Gannoruwa (AF)</td>
<td>21 (13)</td>
<td>12 (08)</td>
</tr>
<tr>
<td>Marassana (AF, DH)</td>
<td>32 (13)</td>
<td>11 (05)</td>
</tr>
<tr>
<td>Meewathura (AF)</td>
<td>20 (10)</td>
<td>15 (07)</td>
</tr>
<tr>
<td>Peradeniya University park (FF, DH)</td>
<td>59 (26)</td>
<td>21 (13)</td>
</tr>
<tr>
<td>Sinharaja (NF, AF)</td>
<td>21 (12)</td>
<td>13 (09)</td>
</tr>
<tr>
<td>Udunuwera (DH)</td>
<td>11 (05)</td>
<td>05 (04)</td>
</tr>
<tr>
<td>Up Country Intermediate Zone</td>
<td>58 (24)</td>
<td>26 (17)</td>
</tr>
<tr>
<td>Bidunuweva (AF)</td>
<td>16 (08)</td>
<td>14 (10)</td>
</tr>
<tr>
<td>Kahagolla (AF, DH)</td>
<td>48 (23)</td>
<td>21 (15)</td>
</tr>
<tr>
<td>Up Country Wet Zone</td>
<td>69 (35)</td>
<td>23 (11)</td>
</tr>
<tr>
<td>Hakgalle (FF, DH)</td>
<td>39 (24)</td>
<td>16 (08)</td>
</tr>
<tr>
<td>Nuwera Eliya (AF, DH, FF)</td>
<td>27 (15)</td>
<td>08 (04)</td>
</tr>
<tr>
<td>Sita Eliya (AF, DH, FF)</td>
<td>22 (16)</td>
<td>15 (10)</td>
</tr>
</tbody>
</table>

AF - Agricultural fields, DH – Disturbed habitats, NF – Natural forests, FF – Floriculture fields
Figure 3. Number of host plant species infested by different thrips species in selected collection sites; (a) Hakgala, (b) Nuwara Eliya, (c) Sita Eliya, (d) Bandarawela, (e) Matale, (f) Meewathura, (g) Dambulla and (h) Makandura.
Haplothrips ganglbaueri had the widest host range (49 spp.) present in Poaceae and Cyperaceae and similarly, Anaphothrips sudanensis was confined to a few grasses (3 spp.). From Poaceae was also recorded Arorathrips mexicanus. Other thrips species specific to certain plant families were: Megalurothrips usitatus and Ayyaria chaetophora to Fabaceae, Sphingothrips trachypogon to Ebenaceae, Thrips simplex to Iridaceae and Microcephalothrips abdominalis to Asteraceae. Genus Thrips had a wide host range infesting diverse families and genera of plants. Thrips flavus, T. florum, T. hawaiiensis and T. palmi in particular were recorded from over 40 host plant species and are the most polyphagous thrips species.

Leaf litter samples yielded mostly larval stages of thrips making identification difficult and in several samples none were found. The leaf litter dwelling thrips recorded were fungal feeding Apelaunothrips sp. and the predatory Karnyothrips melaleucus.

Thrips damage
Different types of feeding damages were observed in thrips infested plants. Silvering, browning and discoloration of flowers and leaves were the most common types of damage observed. Certain species caused leaf deformity and/or premature flower fall. Thrips responsible for such damage belonged to the genera Frankliniella and Thrips. Thrips hawaiiensis caused premature flower loss. Infestations by Scirtothrips dorsalis caused young leaves of plants to curl and turn yellow. Gall formation was not so common in crops, but thrips in the family Phlaeothripidae produced leaf galls, particularly in Ficus spp. Feeding by Gynaikothrips ficorum, Gigantothrips tibialis and Lithothrips karnyi resulted in leaf galls (Fig. 4). Androthrips flavipes infesting Piper, is considered a predator of gall inducing thrips. Bronzing in leaves was yet another type of damage observed in thrips infested plants; five species, Ayyaria chaetophora, Dendrothripoides Dendrithrips innoxius, Pseudodendrothrips ornatissimus, Scirtothrips dorsalis and Thrips palmi were responsible for this damage.

Figure 4. Leaf fold damage in Ficus bengamina due to infestation by Gynaikothrips ficorum (Inset).
DISCUSSION

The survey represents the very first comprehensive collection of thrips from different habitats and regions in selected locations of Sri Lanka. It also enabled updating previous thrips records and their host plants, since the initial work on thrips in Sri Lanka by Schmutz (1913) and a few studies thereafter. A large number of the newly recorded and previously recorded thrips species being pests of cosmopolitan distribution is of concern. A likely factor that may be responsible for their spread is the cut flower and foliage trade that operates across trans-boundaries, which have become important export commodities in the developing and developed world. The degree to which pest species of thrips are emerging can only be estimated if baseline information is available on existing species in a country. This study attempted to fulfill this task through collections made in selected locations.

The number of thrips species recorded through the survey is relatively small in comparison to the fauna of neighbouring India where 625 species have been reported (Ananthakrishnan and Muralleedharan, 1974). The 24 species recorded for the first time in Sri Lanka also occur in India. Furthermore, of the recorded thrips, 53 species in 41 genera are shared with India. However, *Thrips parvispinus* recorded during this survey is not represented in India (Ananthakrishnan & Sen, 1980; Bhatti, 1990).

Although, the survey documented host plants and localities of the 72 species of thrips, no specific association between them was evident. Hence, no clear pattern of distribution in relation to host plants of the thrips was recognized. It is hoped that this survey would be an impetus for more intensive collections islandwide with the emphasis on agricultural and floricultural areas.

Symptoms of viral infection in thrips infested plants are often difficult to detect, as plants with nutrient deficiencies too tend to show similar symptoms. Therefore, without detailed investigations it is not correct to confirm viral symptoms. Tospoviruses are considered to depend on thrips for their existence in nature. Only 9 (0.2%) of the 5,500 known species of thrips have been shown to be associated with viral diseases (Mound, 1996). During the survey although 5 potential viral vector species were recorded, symptoms of viral disease was not observed.

In the subfamily Phlaeothripinae about 300 species are known to induce galls on nearly 300 angiosperm species (Raman and Ananthakrishnan, 1984). Galls of four main morphotypes are induced by thrips. They are leaf fold galls, leaf rolled galls, ceratoneon pouch galls, axillary bud galls and convoluted leaf galls (Lewis, 1973, Ananthakrithshika & Raman, 1989). Of them, leaf fold galls, leaf rolled galls and convoluted leaf galls were observed in plants (Appendix 1) infested by 5 thrips species in the subfamily Phlaeothripinae. Most thrips induced galls were infested with one or more secondary thrips species. But they are relatively fewer than the gall making thrips. *Androthrips flavipes* recorded on *Piper nigrum* was one such species of predatory thrips of gall forming thrips.

Of the 180 pest thrips of the world (Moritz et al., 2001), 14 were recorded from vegetable crops during the study. Majority of the thrips species infesting vegetables were specific to the crop host rather than to the habitat or location. Leaf curl in chilli was widespread whenever infestations of *Scirtothrips dorsalis* were present as evident from previous work in Sri Lanka by Gunawardena (2002) and the world (Edwards and Dixon, 2005). Host records of thrips and their damage reported from vegetable crops in this study agree well with findings made in other countries (Moritz et al., 2004), inferring the cosmopolitan nature of their distribution in relation to common vegetable crops of the world.

There is a paucity of published information on thrips damage to cut flowers in Sri Lanka. According to Halstead et al. (2000) in USA, the major pest thrips of rose, asters and chrysanthemum is *Frankliniella occidentalis*, the Western Flower Thrips. This species had been previously recorded from Sri Lanka on other plant hosts and not from cut flowers. The thrips species on gladiolus and anthuriums are very specific to their host and are found in all parts of the world where these plants are grown. In countries where gerberas are grown, heavy infestations of thrips have been reported (Spiers et al., 2008), while in Sri Lanka the damage appears minimal with only small populations of thrips being recorded. It is important to conduct regular islandwide surveys of thrips to track the spread of thrips species, especially the pest species and new introductions into an island nation across trans-boundaries.

ACKNOWLEDGEMENTS

It is through the support of many individuals and institutions that this study was made possible. Deputy Directors of Regional Agricultural Research Stations in Sita Eliya (Dr. Mangalika
Nugaliyadde), Angunukolapelessa, Bathalagoda, Bandarawela, Maha Iluppallama, Makandura and Gannoruwa (Ms. I. Wahundeniya); Director, Royal Botanical Gardens and Deputy Director of the Hakgala Botanical Gardens supported us in collecting thrips from their respective areas. Agricultural Extension Officer at Nuwara Eliya helped in collecting thrips from cut flower farms and parks and Ms. Dayani Karunanayake of Horticultural Research Development Institute (HORDI) provided thrips found on anthuriums. It is with the ready help of Dr. L. A. Mound, Honourary Research Fellow, CSIRO, Entomology Australia and Prof. J.S. Bhatti, New Delhi, India that the identity of difficult thrips specimens and the newly recorded species for Sri Lanka were confirmed. The staff of the National Herbarium, Peradeniya and Dr. Asanga Weeratunge, formerly of the Dept. of Botany, University of Peradeniya helped with the identification of plant specimens. Ms. Shanthi Dharmaratne of the Dept. of Zoology assisted with slide mounting of specimens and also provided specimens from her collection. Mr. Niroshan Samarasinghe is acknowledged for the photography. Mr. Dileepa Wattegama assisted us with field work. Permission was granted by the Forest Department and the Department of Wildlife Conservation to collect specimens and to send selected thrips specimens abroad for confirmation of their identity. The study was made possible through funding from the National Science Foundation of Sri Lanka (Grant No.RG/2005/EB/05)

REFERENCES

Appendix 1. Systematic list of Thysanoptera recorded during the survey with details of distribution, host records, and damage.

SUBORDER TEREBRANTIA

<table>
<thead>
<tr>
<th>Family Thripidae – Subfamily Panchaetothripinae</th>
</tr>
</thead>
</table>
| 1. **†Astrothrips tumiceps** Karny 1923 – Angunakolapellassa
| 2. †*Caliothrips indicus* (Bagnall 1913) – Maha-Illuppallama & Peradeniya
 Leaves of grasses (Poaceae). |
 Achyranthes aspera L. (Amaranthaceae).
 Damage: Brown and white marks on leaves. |
| 4. **†Elixothrips brevisetis** Bagnall 1919 - Peradeniya
 Clerodendrum infortunatum L. (Verbenaceae). |
| 5. *Helionothrips brunneipennis* (Bagnall 1915) – Makandura and Peradeniya
 Litsea glutinosa (Lauraceae), *Michelia nilagirica* Zenker (Magnoliaceae), *Neolitsea cassia* (Lauraceae).
 Damage: Scarring and browning of leaves and the whole plant becomes severely affected. |
| 6. †*Helirothrips haemorrhoidalis* (Bouché 1833) (Green house thrips) - Gannoruwa, Hakgala, Sita Eliya,
 Meewathura and Kahagolla
 Damage: Scarring and browning of leaves and buds. |

1. Thysanoptera, conventionally treated as an insect order, have been considered as superorder (Bhatti 1986, 1988, 1994, 2003) to include two orders Terebrantia and Tubulifera, which have been treated by other authors as suborders of order Thysanoptera.

2. Since 1979 (Bhatti 1979a, Mound et al. 1980) the Terebrantia had been divided into 7 families: Uzelothripidae, Merothripidae, Aeolothripidae, Stenurothripidae / Adheterothripidae, Thripidae, Hemithripidae / Fauriellidae, and Heterothripidae, included in 4 superfamilies: Uzelothripoidea, Merothripoidea, Aeolothripoidea, Thripoidea (Bhatti 1979b, 1989). An eighth family Melanthripidae was added (Bhatti 1990) under Aeolothripoidea. More recently, the Terebrantia have been classified into 10 superfamilies comprising 28 families (Bhatti 2006).

3. Following Priesner (1949), the family Thripidae was divided into two subfamilies Thripinae and Panchaethripinae, until Bhatti (1979b, 1989) recognized four subfamilies under Thripidae. Subsequently (Bhatti 2006) members of Thripidae were classified into 12 different families in 10 superfamilies based essentially on previously unknown structural features.

7. *Panchaetothrips indicus* Bagnall 1912 - Matale and Angunakolapellassa
Alpinia calcarata Roscoe (Zingiberaceae), *Curcuma longa* L. (Zingiberaceae), *Elettaria cardamomum* (L.) Maton (Zingiberaceae).
Damage: white streaks and patches on leaves.

8. *Retithrips syriacus* Mayet 1890 (Castor thrips)- Angunakolapellassa and Maha- Illuppallama
Damage: cloudy scarring, browning patches and discolouration in leaves.

9. *Rhipiphorothrips pulchellus* (Morgan 1913) - Peradeniya and Sinharaja forest

10. *Selenothrips rubrocinctus* (Giard 1901) -Red banded thrips - Angunakolapellassa, Maha- Illuppallama, Makandura, Kahagolla and Bindunuwewa

11. *Tryphactothrips rutherfordi* (Bagnall 1915) – Peradeniya
Nauclea orientalis (L.) (Rubiaceae), *Passiflora edulis* Sims. (Passifloraceae) *Michelia champaca* L. (Magnoliaceae).

12. ***Onciellia* sp.** - Peradeniya.
Clerodendrum infortunatum L. (Verbenaceae).

Family Thripidae – Subfamily Dendrothripinae

13. *Pseudodendrothrips ornatisimus* Schmutz 1913 – All climatic zones
Artocarpus heterophyllus Lam. (Moraceae).
Damage: Brown patches on leaves.

Flacourtia jangomas (Lour.) Rausch. (Flacourtiaceae).

Family Thripidae – Subfamily Thripinae

15. *Anaphothrips sudanensis* Trybom 1911 – Bathalagoda, Kahagolla and Maha Illuppallma
Eleusine coracana (L.), *Eleusine indica* (L.) Gaertn. and *Eragostis unioloides* (Retz.) (Poaceae).

16. ***Arorathrips mexicanus* Crawford 1909** - Dry zone and Intermediate zones

5 Included in family Dendrothripidae of superfamily Dendrothripoidea in Bhatti (2006).

6 Included in family Chirothripidae of superfamily Thripoidea in Bhatti (2006).
17. **†Ayyaria chaetophora Karny 1927** - Kahagolla and Angunakolapellassa

18. **†Ceratothripoides claratris (Shumshier 1946)** - Angunakolapellassa and Maha Illuppallama.

Capsicum annum L. (Solanaceae), Coccinia grandis (L.) J.Voight (Cucurbitaceae), Solanum trilobatum L. (Solanaceae), Solanum macrocarpon L. (Solanaceae).

19. †Chaetanaphthrips orchidii Moutlon 1907 - Peradeniya and Bandarawela

Anthurium andraeanum Linden (Araceae)

Damage: White streaks on unopened flowers and leaves, discolouration of spathe.

20. †Chaetanaphthrips signipennis Bagnall 1914 – Angunakolapellassa

Musa paradisiaca L. (Musaceae).

21. **†Craspedothrips minor** (Bagnall 1923) – Angunakolapellassa, Maha-Illuppallama, Kahagolla and Dambulla

Cassia occidentalis L. (Fabaceae), *Gloriosa superba* L. (Colchicaceae), *Gmelina asiatica* L. (Verbenaceae), *Ricinus communis* L. (Euphorbiaceae).

22. **†Dendrothripoides innoxius** (Karny 1914) - Angunakolapellassa and Kahagolla

Ipomoea batatas (L.) Lam. and *Ipomoea indica* (Burm.f.) Merr. (Convolvulaceae).

Damage: Bronzing of leaves.

23. **Dichromothrips smithi** (Zimmermann 1900) - Sinharaja forest *Arundinia graminifolia* (D.Don) Hochr. (Orchidaceae).

24. **Erinothrips sp.** - Kahagolla and Nuwara Eliya

Hedyotis sp. (Rubiaceae), *Hippeastrum punicum* (Lam.) Kuntze (Amaryllidaceae).

25. †Frankliniella schultzei (Trybom 1910) – *(Common blossom thrips)* – all climatic zones

Damage: Scarring, browning and discolouration of flowers.

26. †Frankliniella occidentalis (Pergande 1895) *(Western flower thrips)*

Angunakolapellassa, Bathalagoda, Maha- Illuppallama and Knuckles forest

Damage: Scarring, browning and discolouration of flowers.

27. †Megalurothrips usitatus (Bagnall 1913) – All agroecological regions

Arachis hypogaea L. (Fabaceae), *Cajanus cajan* (L.) Millsp.(Fabaceae), *Cassia auriculata* L. (Fabaceae), *Cleome chelidonioi* L.f. (Capparaceae), *Crotalaria juncea* L. (Fabaceae), *Crotalaria micans* Link (Fabaceae), *Crotalaria sp.1* (Fabaceae), *Desmodium heterophyllum* (Willd.,DC. (Fabaceae), *Erythrina variegata* L. (Fabaceae), *Gliricidia sepium* (Jacq.) Walp. (Fabaceae), *Hiptage benghalensis* (L.) Kurz (Malpighiaceae), *Phaseolus lunatus* L. (Fabaceae), *Phaseolus vulgaris* L. (Fabaceae), *Pueraria phaseoloides* (Roxb.)Benth. (Fabaceae), *Sesbania grandiflora*
28. **Microcephalothrips abdominalis** (Crawford 1910) (Composite Thrips)

All agroecological regions

Damage: Scarring, browning and discoloration of flowers.

29. †**Neohydatothrips samayunkur** Kudô 1995 – (Marigold thrips) Bandarawela

Tagetes erecta L. (Asteraceae).

30. **Rhamphothrips pandens** Sakimura 1983 - Knuckles forest, Kahagolla and Maha Illuppallama

Cassia occidentalis L. (Fabaceae), *Clerodendrum tomentosum* R.Br. (Verbenaceae), *Clisteria guianensis* var. guianensis (Aubl.) Benth. (Fabaceae), *Hibiscus vitifolius* L. (Malvaceae), *Lagerstroemia speciosa* (L.) Pers (Lythraceae).

31. **Scirtothrips cardamomum** (Ramakrishna 1935) (Cardamom thrips) - Matale and Knuckles Region

Elettaria cardamomum (L.) Maton (Zingiberaceae).

Damage: Streaking and wilting of cardamom leaves.

32. **Scirtothrips dorsalis** Hood 1919 – (Chilli thrips) – All climatic zones

Damage: Curling of leaves, bronzing and deformity of leaves.

33. **Stenchatothrips bifornis** (Bagnall 1913) (Rice thrips) - Bathalagoda, Maha Illuppallama and Knuckles region

Oryza sativa L. (Poaceae).

Damage: Streaking of leaves and wilting of seedlings.

34. **Thrips coloratus** Schmutz 1913 - Meewathura and Knuckles forest

35. **Thrips flavus** Schrank 1776 – Wide spread in Upcountry Wet zone

7 Included in family Sericothripidae of superfamily Thripoidea in Bhatti (2006).
Gerbera sp. (Asteraceae), Gladiolus sp. (Iridaceae), Hydrangea macrophylla (Thunb.) Ser. (Hydrangeaceae), Impatiens hawkeri Bull. (Balsaminaceae), Lilium candidum L. (Liliaceae), Limonium sp. (Plumbaginaceae), Lobularia maritima (L.) Desv. (Brassicaceae), Lapinus sp. (Fabaceae), Miconia calvescens DC. (Melastomataceae), Monodora myristica (Gaertn.) Dunal (Annonaceae), Ornithogalum thyroides Jacq. (Hyacinthaceae), Petunia x hybrida (Solanaeaceae), Phlox amoena Sims. (Polemoniaceae), Pyrus communis L. (Rosaceae), Rosa indica L. (Rosaceae), Spiraea cantoniensis Lor. (Rosaceae), Xerochrysum bracteata (Vent.) Tzvelev. (Asteraceae), Zantedeschia aethiopica (L.) Spreng. (Araceae).

Damage: Scarring, browning and discolouration of flowers.

**36. **^†Thrips florum Schmutz 1913 – Wet and Intermediate zones

Accacia pennaata (L.) Wild. (Fabaceae), Aleurites montana (Lour.) E. Wilson (Euphorbiaceae), Amherstia nobilis Wall. (Fabaceae), Brunsfelsia laitfolia Benth. (Solanaeaceae), Callistephus chinensis (L.) Nees (Asteraceae), Cannum generalis L. (Cannaceae), Cassia didymobotrya Fresen. (Fabaceae), Celosia argentina L. (Amaranthaceae), Citrus grandis (L.) Osbeck. (Rutaceae), Citrus medica L. (Rutaceae), Clerodendrum splendens G. Don ex James (Verbenaceae), Coccinia grandis (L.) J. Voight (Cucurbitaceae), Coffea arabica L. (Rubiaceae), Couroupita surinamensis Mart. ex O. Berg (Lecythidaceae), Crotalaria pallida Ait. (Fabaceae), Gardenia jasminoides J. Ellis (Rubiaceae), Gloriosa superba L. (Verbenaceae), Hedytotis fruticosa L. (Rubiaceae), Helicteres isora L. (Sterculiaceae), Hibiscus rosa-sinensis L. (Malvaceae), Hydrangea macrophylla (Thunb.) Ser. (Hydrangeaceae), Ipomoea indica (Burm.f.) Merr. (Convolvulaceae), Lantana camara L. (Verbenaceae), Leea indica (Burm.f.) Merr. (Leeeaceae), Lilium candidum L. (Liliaceae), Lobularia maritima (L.) Desv (Brassicaceae), Ludwigia perviana(L.) Hara (Onagraceae), Moringa oleifera Lam. (Moringaceae), Pentas lanceolata coccinea (Rubiaceae), Saraca asoca (Roxb.) Wilde (Fabaceae), Spathiphyllum sp. (Araceae), Spathtodea campanulata Beauv. (Bignoniaceae), Tabebuia serratifolia (Vahl) Nicholson, Tecoma stans (L.) Kunth (Bignoniaceae), Thevetia peruviana (Pers.) Merr. (Apocynaceae), Urena lobata L. (Malvaceae).

**37. **^†Thrips hawaiiensis (Morgan 1913) - Wet and Intermediate zones

Brunsfselsia laitfolia Benth. (Solanaeaceae), Camellia sinensis (L.) kuntze (Theaceae), Canna generalis L (Cannaceae), Chrysanthemum segetum (L.) Osbeck. (Compositae), Citrus limon (L.) Burm.f. (Rutaceae), Citrus medica L. (Rutaceae), Citrus megalosylocarpa var. pennsavulata Lush. (Rutaceae), Citrus reticulata Blanco (Rutaceae), Cleome chelidonii L.f. (Capparaceae), Eupatorium sp. (Asteraceae), Gardenia jasminoides J. Ellis (Rubiaceae), Impatiens balsamina L. (Balsaminaceae), Malviviscus penduliflorus Mocino. & Sesse. Ex. DC. (Malvaceae), Mangifera indica (L.), (Anacardiaceae), Melilotus indicus (L.) All. (Fabaceae), Muntingia calabura L. (Tiliaceae), Musa paradisiaca L. (Musaceae), Persea americana Miller (Lauraceae), Pseudocalymma alliaceum (Lam.) Sandwith (Bignoniaceae), Psidium guajava L. (Myrtaceae), Rosa indica L. (Rosaceae), Saraca thaipingensis Prain (Fabaceae), Sarca asoca (Roxb.) de Wild (Fabaceae), Syzygium sp. (Myrtaceae), Ocimum tenuiflorum L. (Lamiaceae).

Damage: Scarring, browning and discolouration of flowers.

**38. **^†Thrips levatus Bhatti 1980 – Peradeniya

Napoleona imperialis Pal de Beauv. (Lecythidaceae).

**39. **^†Thrips orientalis (Bagnall 1915) - All agroecological regions

**40. **^†Thrips palmi Karny 1925 - All agroecological regions

Abelmoschus esculentus (L.) Moench (Malvaceae), Amaranthus spinosus L. (Amaranthaceae), Basilicum polystachyon (L.) Moench (Lamiaceae), Bellis sp. Callistephus chinensis (L.) Nees (Asteraceae), Convolvulusensiformis (L.) DC. (Fabaceae), Capsicum annum L. (Solanaeaceae), Capsicum frutescens L. (Solanaeaceae), Celosia argentia L. (Amaranthaceae),
**41. *†Thrips parvispinus* (Karny 1922) - Makandura, Marassana and Peradeniya

Cárica papaya L. (Caricaceae), *Verbena bonariensis* L. (Verbenaceae).

**42. †Thrips simplex* (Morison 1930) (Gladiolus Thrips) – confined to Upcountry Wet zone

Damage: Scarring, browning and discoloration of flowers and leaves.

**43. *†Thrips subnudula* (Karny 1926) - All agroecological regions

**44. *†Thrips sumatrensis* Priesner 1934 – All agroecological regions

Damage: Scarring, browning and discoloration of flowers.

**45. †Thrips tabaci* Lindeman 1889 (Onion thrips) - Wet and Intermediate zones

Damage: Scarring, browning and discoloration of flowers and leaves.

46. Thrips sp.1 - Mid and Upcountry Wet zone and Upcountry Intermediate zone

Tillekaratne et al.

Family Phlaeothripidae - Subfamily Idolothripinae

49. *Diaphorothrips unguipes* Karny 1920 - Peradeniya
 Bark of freshly felled trunk of *Mangifera indica* L. (Anacardiaceae).
 Fungus feeding species.

50. *Dinothrips spinosus* (Schmutz 1913) - Peradeniya and Hakgala
 Albizia sp. (Fabaceae), *Artocarpus heterophyllus* Lam. (Moraceae), *Ficus exasperata* Vahl. (Moraceae). Fungus feeding species.

51. *Elaphrothrips greenii* (Bagnall 1914) - Peradeniya
 Fungus feeding species.

52. *Elaphrothrips malayensis* (Bagnall 1909) - Matale and Knuckles forest range
 Piper nigrum L. (Piperaceae).
 Damage: Leaf galls, Fungus feeding species.

Family Phlaeothripidae – Subfamily Phlaeothripinae

53. *Androthrips flavipes* Schmutz 1913 – Matale
 Piper nigrum L. (Piperaceae).
 Damage: Leaf galls, a predatory species.

54. **Apelaunothrips** sp. - Monaragala and Kokagala
 In leaf litter, fungus feeding species.

55. **Dolichothrips** sp. - Dry, Wet and Intermediate zones

56. *Gigantothrips tibialis* Bagnall 1921 - Knuckles Forest and Matale
 Ficus benjamina L. (Moraceae) and *Careya arborea* Roxb. (Lecythidaceae).
 Damage: Leaf galls in *F. benjamina*. Scarring, browning and discoulouration of leaves in *C. arborea*.

8 Conventional, the Tubulifera are classified into a single family Phlaeothripidae, which is divided into two subfamilies, Idolothripinae and Phlaeothripinae, based on the width of maxillary stylets, 5-15 μm in the former and 3-5 μm in the latter. Based on the structure of the wing surface, Bhatti (1991) considers that these two groups are paraphyletic. And 14 families have been included in Tubulifera (Bhatti 1988, 1992, 1995, 1998a–d).
57. **†Gynaikothrips ficorum** (Marchal 1908) - Mid country Wet zone
 Ficus benjamina L. (Moraceae) & *Thunbergia* sp. (Acanthaceae).
 Damage: Leaf galls.

58. *Gynaikothrips* sp. - Sita Eliya.
 Euodia luna-ankenda (Gaertn.) (Rutaceae).
 Damage: Leaf fold galls.

59. **†Haplothrips ceylonicus** Schmutz 1913 – Hakgala, Maha Illuppallima and Peradeniya

60. **†Haplothrips ganglbaueri** Schmutz 1913 – All agro ecological regions

61. **†Haplothrips gowdeyi** (Franklin 1908) - All agro ecological regions
Haplothrips sp.3 - Mid country and Upcountry
Amaranthus spinosus L. (Amaranthaceae), Canna generalis L. (Cannaceae), Cestrum elegans (Brongn.) Schlecht. (Solanaceae), Coffea arabica L. (Rubiaceae), Cymbopogon nardus (L.) Rendle (Poaceae), Mangifera indica L. (Anacardiaceae), Psidium guajava L. (Myrtaceae), Tagetes erecta L. (Asteraceae).

Karnyothrips melaleucus Bagnall 1911 - Peradeniya
Collected from leaf litter, a predatory species.

Liothrips floridensis (Watson 1913) - Peradeniya
Cinnamomum camphora (L.) J. Presl (Lauraceae).
Damage: Scarring and browning of leaves.

Liothrips karnyi (Bagnall 1914) - Wet zone
Piper nigrum L (Piperaceae).
Damage: Leaf galls.

Membrothrips sp. – Dambulla, Matale, Mahallupallama, Meewathura and Peradeniya
Jasminum sambac (L.) Ait. (Oleaceae), Tectona grandis L.f. (Verbenaceae).

Praepodothrips sp. - Gannoruwa, Marassana and Naula
Lycopersicon esculentum Miller (Solanaceae).

Sphingothrips trachypogon (Karny 1923) - Peradeniya
Diospyros atrata (Thw.) Alston, Diospyros malabarica (Desr.) Kostel (Ebenaceae).
Damage: Scarring and browning of leaves.

Phlaeothripinae sp.1 - Peradeniya and Sinharaja forest
Vateria copallifera (Retz.) Alston, Vateria copallifera (Retz.) Alston (Dipterocarpaceae).

Phlaeothripinae sp.2 - Sinharaja forest
Syzygium alubbo Kosterm (Myrtaceae).

Phlaeothripinae sp.3 - Peradeniya
In leaf litter, fungus feeding species.

Phlaeothripinae sp.4 - Peradeniya
In leaf litter, fungus feeding species.

* Species previously not recorded from Sri Lanka (25 species in 18 genera)
** Genera previously not recorded from Sri Lanka (18 genera)
† Pest thrips species (42) based on Moritz et al. (2001)