ABIOTIC STRESSORS ENHANCE THE ANTIOXIDANT ACTIVITY AND TOTAL PHENOLIC CONTENT IN THE LEAVES OF SONCHUS OLERACEUS L. (‘GAL POTHUKOLA’)

S.M.M.R. Mawalagedera¹,²* and K.S. Gould²

¹Department of Plant Sciences, Faculty of Agriculture, Rajarata University of Sri Lanka, Puliyankulama, Sri Lanka
²School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand

*maheshinimawalagedera@yahoo.com

Leaves of Sonchus oleraceus L., a traditional component of the Māori diet in New Zealand, are rich in phenolic compounds and show potent extractable antioxidant activities. Extractable antioxidant activities show considerable variation among plants, which may be due to variation in their growing environments and/or genotype, but the precise reasons for this variation are unknown.

To study whether stressors augment the antioxidant activities, the DPPH (2,2-diphenyl-1-picrylhydrazyl radical) scavenging capacities and concentration of phenolic compounds were measured by the Folin-Ciocalteu method and expressed as mg tannic acid equivalent g⁻¹ of dry plant weight (mg TAE g⁻¹) for methanolic extracts of leaves following exposure of the S. oleraceus plants to drought (withhold water for 7 d and re-water), chilling (repeatedly held at 5 °C for 12 h overnight and returned to the glasshouse during the day), salinity (irrigating with 50 mM NaCl, 150 mL day⁻¹), low light (7±1 µmol m⁻² s⁻¹) and control (continuously in glasshouse irrigated with 150 mL water day⁻¹).

Chilling and salinity doubled the antioxidant activities and concentrations of phenolic compounds compared to DPPH scavenging 1/EC₅₀ 8±1 (g L⁻¹)⁻¹ and total phenolics 228±30 mg TAE g⁻¹ of the control. Drought stressor increased the concentration of phenolic compounds (282±60 mg TAE g⁻¹) but not antioxidant activities [8±1 (g L⁻¹)⁻¹]. Low light considerably diminished the accumulation of phenolic compounds and antioxidant activities control (DPPH scavenging 1/EC₅₀ 3±0 (g L⁻¹)⁻¹, 101±16 mg TAE g⁻¹) compared to the control.

In conclusion, application chilling and salinity stressors to plants enhanced the antioxidant activities of S. oleraceus leaves, which may improve its value further as a valuable dietary antioxidant source for humans.

Financial assistance given by the New Zealand International Doctoral Research Scholarship and Wellington Botanic Society, New Zealand is acknowledged.